Skip to main content
Journal cover image

Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.

Publication ,  Journal Article
O'Brien, TJ; Brooks, BR; Patierno, SR
Published in: Mol Cell Biochem
November 2005

Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase delta/epsilon inhibitor, aphidicolin, but not 2',3'-dideoxythymidine triphosphate (ddTTP), a polymerase beta inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Mol Cell Biochem

DOI

ISSN

0300-8177

Publication Date

November 2005

Volume

279

Issue

1-2

Start / End Page

85 / 95

Location

Netherlands

Related Subject Headings

  • Xeroderma Pigmentosum Group D Protein
  • Transfection
  • Subcellular Fractions
  • Plasmids
  • Nucleic Acid Synthesis Inhibitors
  • Mutagens
  • Humans
  • Hela Cells
  • HeLa Cells
  • Enzyme Inhibitors
 

Citation

APA
Chicago
ICMJE
MLA
NLM
O’Brien, T. J., Brooks, B. R., & Patierno, S. R. (2005). Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells. Mol Cell Biochem, 279(1–2), 85–95. https://doi.org/10.1007/s11010-005-8225-0
O’Brien, Travis J., Bradford R. Brooks, and Steven R. Patierno. “Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.Mol Cell Biochem 279, no. 1–2 (November 2005): 85–95. https://doi.org/10.1007/s11010-005-8225-0.
O’Brien TJ, Brooks BR, Patierno SR. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells. Mol Cell Biochem. 2005 Nov;279(1–2):85–95.
O’Brien, Travis J., et al. “Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells.Mol Cell Biochem, vol. 279, no. 1–2, Nov. 2005, pp. 85–95. Pubmed, doi:10.1007/s11010-005-8225-0.
O’Brien TJ, Brooks BR, Patierno SR. Nucleotide excision repair functions in the removal of chromium-induced DNA damage in mammalian cells. Mol Cell Biochem. 2005 Nov;279(1–2):85–95.
Journal cover image

Published In

Mol Cell Biochem

DOI

ISSN

0300-8177

Publication Date

November 2005

Volume

279

Issue

1-2

Start / End Page

85 / 95

Location

Netherlands

Related Subject Headings

  • Xeroderma Pigmentosum Group D Protein
  • Transfection
  • Subcellular Fractions
  • Plasmids
  • Nucleic Acid Synthesis Inhibitors
  • Mutagens
  • Humans
  • Hela Cells
  • HeLa Cells
  • Enzyme Inhibitors