Preferential formation and repair of chromium-induced DNA adducts and DNA--protein crosslinks in nuclear matrix DNA.

Published

Journal Article

The distributions of chromium-DNA adducts and DNA-protein crosslinks induced by treatment of intact CHO cells with carcinogenic chromium were examined in distinct chromatin subfractions: a chromatin subfraction released by digestion of isolated nuclei with micrococcal nuclease (1SF, 14% of total nuclear DNA), bulk chromatin (74% of total DNA) and a nuclear matrix fraction (12% of total DNA). The identity of the matrix fraction was confirmed by hybridization of DNA from each subfraction with a cDNA probe prepared from total mRNA isolated from CHO cells, which showed that the 1SF and nuclear matrix fractions were 2.3- and 3.8-fold enriched in actively transcribed genes respectively, compared to total unfractionated DNA. Immediately following treatment of cells with 150 microM sodium chromate for 2 h the binding of chromium to each chromatin fraction was found to be non-uniform. Compared with total unfractionated nuclei, the nuclear matrix fractions were enriched in chromatin-bound chromium (3.4-fold), whereas the bulk chromatin fraction was relatively depleted (0.5-fold). Approximately 13% of nuclear chromium was associated with the detergent-soluble lipid component of nuclei. A similar distribution of chromatin-bound chromium was also apparent 24 h after the chromate treatment. Immediately after the 2 h chromate treatment, chromium-DNA adducts were detected in all the chromatin subfractions. Total nuclear and bulk chromatin DNA contained similar levels of this type of damage. The 1SF fraction was depleted approximately 3-fold in this type of damage compared with total nuclear DNA. In contrast, the nuclear matrix was markedly enriched in chromium-DNA adducts (approximately 4-fold compared with total nuclear DNA) at this time. As previously demonstrated, chromium-DNA adducts in total nuclear DNA decreased within the first 24 h, but thereafter persisted at a similar level. Chromium-DNA adducts in nuclear matrix DNA also reached maximum levels at the end of the 2 h treatment and decreased to 68% and 39% of this level by 24 and 48 h after treatment respectively. In contrast, the adduct levels in the 1SF and bulk chromatin fractions did not change up to 48 h after treatment. Chromium-induced DNA-protein crosslinks, which were stable to 8 M urea and 2% SDS, occurred almost exclusively in the nuclear matrix fraction. The crosslinks in this fraction reached a maximum level at the end of the 2 h treatment, but returned to control levels 24 h later.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

Duke Authors

Cited Authors

  • Xu, J; Manning, FC; Patierno, SR

Published Date

  • July 1994

Published In

Volume / Issue

  • 15 / 7

Start / End Page

  • 1443 - 1450

PubMed ID

  • 8033323

Pubmed Central ID

  • 8033323

International Standard Serial Number (ISSN)

  • 0143-3334

Digital Object Identifier (DOI)

  • 10.1093/carcin/15.7.1443

Language

  • eng

Conference Location

  • England