A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice.

Journal Article (Journal Article)

The near-infrared photoluminescence intrinsic to semiconducting single-walled carbon nanotubes is ideal for biological imaging owing to the low autofluorescence and deep tissue penetration in the near-infrared region beyond 1 microm. However, biocompatible single-walled carbon nanotubes with high quantum yield have been elusive. Here, we show that sonicating single-walled carbon nanotubes with sodium cholate, followed by surfactant exchange to form phospholipid-polyethylene glycol coated nanotubes, produces in vivo imaging agents that are both bright and biocompatible. The exchange procedure is better than directly sonicating the tubes with the phospholipid-polyethylene glycol, because it results in less damage to the nanotubes and improves the quantum yield. We show whole-animal in vivo imaging using an InGaAs camera in the 1-1.7 microm spectral range by detecting the intrinsic near-infrared photoluminescence of the 'exchange' single-walled carbon nanotubes at a low dose (17 mg l(-1) injected dose). The deep tissue penetration and low autofluorescence background allowed high-resolution intravital microscopy imaging of tumour vessels beneath thick skin.

Full Text

Duke Authors

Cited Authors

  • Welsher, K; Liu, Z; Sherlock, SP; Robinson, JT; Chen, Z; Daranciang, D; Dai, H

Published Date

  • November 2009

Published In

Volume / Issue

  • 4 / 11

Start / End Page

  • 773 - 780

PubMed ID

  • 19893526

Pubmed Central ID

  • PMC2834239

Electronic International Standard Serial Number (EISSN)

  • 1748-3395

International Standard Serial Number (ISSN)

  • 1748-3387

Digital Object Identifier (DOI)

  • 10.1038/nnano.2009.294


  • eng