The impact of blade loading and unsteady pressure bifurcations on low-pressure turbine flutter boundaries


Conference Paper

© Copyright 2015 by ASME. The three major aeroelastic issues in the turbomachinery blades of jet engines and power turbines are forced response, non-synchronous vibrations, and flutter. Flutter primarily affects high-aspect ratio blades found in the fan, fore high-pressure compressor stages, and aft low-pressure turbine (LPT) stages as low natural frequencies and high axial velocities create smaller reduced frequencies. Often with LPT flutter analyses, physical insights are lost in the exhaustive quest for determining whether the aerodynamic damping is positive or negative. This paper underlines some well known causes of low-pressure turbine flutter in addition to one novel catalyst. In particular, an emphasis is placed on revealing how local aerodynamic damping contributions change as a function of unsteady (e.g. mode shape, reduced frequency) and steady (e.g. blade torque, pressure ratio) parameters. To this end, frequency domain RANS CFD analyses are used as computational wind tunnels to investigate how aerodynamic loading variations affect flutter boundaries. Preliminary results show clear trends between the aerodynamic work influence coefficients and variations in exit Mach number and back pressure, especially for torsional mode shapes affecting the passage throat. Additionally, visualizations of qualitative bifurcations in the unsteady pressure phases around the airfoil shed light on how local damping contributions evolve with steady loading. Final results indicate a sharp drop in aeroelastic stability near specific regions of the pressure ratio indicating a strong correlation between blade loading and flutter. Passage throat shock behavior is shown to be a controlling factor near the trailing edge, and like critical reduced frequency, this phenomenon is shown to be highly dependent on the vibratory mode shape.

Full Text

Duke Authors

Cited Authors

  • Waite, JJ; Kielb, RE

Published Date

  • January 1, 2015

Published In

  • Proceedings of the Asme Turbo Expo

Volume / Issue

  • 7B /

International Standard Book Number 13 (ISBN-13)

  • 9780791856772

Digital Object Identifier (DOI)

  • 10.1115/GT2015-42857

Citation Source

  • Scopus