Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma.


Journal Article

BACKGROUND: M protein mutant vesicular stomatitis virus (M51R-VSV) has oncolytic properties against many cancers. However, some cancer cells are resistant to M51R-VSV. Herein, we evaluate the molecular determinants of vesicular stomatitis virus (VSV) resistance in pancreatic adenocarcinoma cells. METHODS: Cell viability and the effect of β-interferon (IFN) were analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Gene expression was evaluated via microarray analysis. Cell infectability was measured by flow cytometry. Xenografts were established in athymic nude mice and treated with intratumoral M51R-VSV. RESULTS: Four of five pancreatic cancer cell lines were sensitive to M51R-VSV, whereas Panc 03.27 cells remained resistant (81 ± 3% viability 72 h after single-cycle infection). Comparing sensitive MiaPaCa2 cells with resistant Panc 03.27 cells, significant differences in gene expression were found relating to IFN signaling (P = 2 × 10(-5)), viral entry (P = 3 × 10(-4)), and endocytosis (P = 7 × 10(-4)). MiaPaCa2 cells permitted high levels of VSV infection, whereas Panc 03.27 cells were capable of resisting VSV cell entry even at high multiplicities of infection. Extrinsic β-IFN overcame apparent defects in IFN-mediated pathways in MiaPaCa2 cells conferring VSV resistance. In contrast, β-IFN decreased cell viability in Panc 3.27 cells, suggesting intact antiviral mechanisms. VSV-treated xenografts exhibited reduced tumor growth relative to controls in both MiaPaCa2 (1423 ± 345% versus 164 ± 136%; P < 0.001) and Panc 3.27 (979 ± 153% versus 50 ± 56%; P = 0.002) tumors. Significant lymphocytic infiltration was seen in M51R-VSV-treated Panc 03.27 xenografts. CONCLUSIONS: Inhibition of VSV endocytosis and intact IFN-mediated defenses are responsible for M51R-VSV resistance in pancreatic adenocarcinoma cells. M51R-VSV treatment appears to induce antitumor cellular immunity in vivo, which may expand its clinical efficacy.

Full Text

Cited Authors

  • Blackham, AU; Northrup, SA; Willingham, M; Sirintrapun, J; Russell, GB; Lyles, DS; Stewart, JH

Published Date

  • April 2014

Published In

Volume / Issue

  • 187 / 2

Start / End Page

  • 412 - 426

PubMed ID

  • 24252853

Pubmed Central ID

  • 24252853

Electronic International Standard Serial Number (EISSN)

  • 1095-8673

Digital Object Identifier (DOI)

  • 10.1016/j.jss.2013.10.032


  • eng

Conference Location

  • United States