Skip to main content

The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues.

Publication ,  Journal Article
Abaffy, T; Malhotra, A; Luetje, CW
Published in: J Biol Chem
January 12, 2007

Sequence differences between members of the mouse olfac-tory receptor MOR42 subfamily (MOR42-3 and MOR42-1) are likely to be the basis for variation in ligand binding preference among these receptors. We investigated the specificity of MOR42-3 for a variety of dicarboxylic acids. We used site-directed mutagenesis, guided by homology modeling and ligand docking studies, to locate functionally important residues. Receptors were expressed in Xenopus oocytes and assayed using high throughput electrophysiology. The importance of the Val-113 residue, located deep within the receptor, was analyzed in the context of interhelical interactions. We also screened additional residues predicted to be involved in ligand binding site, based on comparison of ortholog/paralog pairs from the mouse and human olfactory receptor genomes (Man, O., Gilad, Y., and Lancet, D. (2004) Protein Sci. 13, 240-254). A network of 8 residues in transmembrane domains III, V, and VI was identified. These residues form part of the ligand binding pocket of MOR42-3. C12 dicarboxylic acid did not activate the receptor in our functional assay, yet our docking simulations predicted its binding site in MOR42-3. Binding without activation implied that C12 dicarboxylic acid might act as an antagonist. In our functional assay, C12 dicarboxylic acid did indeed act as an antagonist of MOR42-3, in agreement with molecular docking studies. Our results demonstrate a powerful approach based on the synergy between computational predictions and physiological assays.

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

January 12, 2007

Volume

282

Issue

2

Start / End Page

1216 / 1224

Location

United States

Related Subject Headings

  • Xenopus laevis
  • Valine
  • Receptors, Odorant
  • Protein Structure, Tertiary
  • Protein Binding
  • Oocytes
  • Mutagenesis, Site-Directed
  • Molecular Conformation
  • Models, Chemical
  • Mice
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Abaffy, T., Malhotra, A., & Luetje, C. W. (2007). The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem, 282(2), 1216–1224. https://doi.org/10.1074/jbc.M609355200
Abaffy, Tatjana, Arun Malhotra, and Charles W. Luetje. “The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues.J Biol Chem 282, no. 2 (January 12, 2007): 1216–24. https://doi.org/10.1074/jbc.M609355200.
Abaffy, Tatjana, et al. “The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues.J Biol Chem, vol. 282, no. 2, Jan. 2007, pp. 1216–24. Pubmed, doi:10.1074/jbc.M609355200.

Published In

J Biol Chem

DOI

ISSN

0021-9258

Publication Date

January 12, 2007

Volume

282

Issue

2

Start / End Page

1216 / 1224

Location

United States

Related Subject Headings

  • Xenopus laevis
  • Valine
  • Receptors, Odorant
  • Protein Structure, Tertiary
  • Protein Binding
  • Oocytes
  • Mutagenesis, Site-Directed
  • Molecular Conformation
  • Models, Chemical
  • Mice