Directed intermixing in multicomponent self-assembling biomaterials.

Journal Article (Journal Article)

The noncovalent coassembly of multiple different peptides can be a useful route for producing multifunctional biomaterials. However, to date, such materials have almost exclusively been investigated as homogeneous self-assemblies, having functional components uniformly distributed throughout their supramolecular structures. Here we illustrate control over the intermixing of multiple different self-assembling peptides, in turn providing a simple but powerful means for modulating these materials' mechanical and biological properties. In β-sheet fibrillizing hydrogels, significant increases in stiffening could be achieved using heterobifunctional cross-linkers by sequestering peptides bearing different reactive groups into distinct populations of fibrils, thus favoring interfibril cross-linking. Further, by specifying the intermixing of RGD-bearing peptides in 2-D and 3-D self-assemblies, the growth of HUVECs and NIH 3T3 cells could be significantly modulated. This approach may be immediately applicable toward a wide variety of self-assembling systems that form stable supramolecular structures.

Full Text

Duke Authors

Cited Authors

  • Gasiorowski, JZ; Collier, JH

Published Date

  • October 2011

Published In

Volume / Issue

  • 12 / 10

Start / End Page

  • 3549 - 3558

PubMed ID

  • 21863894

Pubmed Central ID

  • PMC3190078

Electronic International Standard Serial Number (EISSN)

  • 1526-4602

International Standard Serial Number (ISSN)

  • 1525-7797

Digital Object Identifier (DOI)

  • 10.1021/bm200763y


  • eng