Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease.

Journal Article (Journal Article)

Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 ("T/I" mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 ("T/I-het" dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for development of therapies to prevent reproductive complications and/or growth failure in humans with IBD.

Full Text

Duke Authors

Cited Authors

  • Nagy, E; Rodriguiz, RM; Wetsel, WC; MacIver, NJ; Hale, LP

Published Date

  • 2016

Published In

Volume / Issue

  • 11 / 4

Start / End Page

  • e0152764 -

PubMed ID

  • 27045690

Pubmed Central ID

  • PMC4821577

Electronic International Standard Serial Number (EISSN)

  • 1932-6203

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0152764


  • eng

Conference Location

  • United States