Invited Review Article: Pump-probe microscopy.

Journal Article (Review)

Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

Full Text

Duke Authors

Cited Authors

  • Fischer, MC; Wilson, JW; Robles, FE; Warren, WS

Published Date

  • March 2016

Published In

Volume / Issue

  • 87 / 3

Start / End Page

  • 031101 -

PubMed ID

  • 27036751

Electronic International Standard Serial Number (EISSN)

  • 1089-7623

International Standard Serial Number (ISSN)

  • 0034-6748

Digital Object Identifier (DOI)

  • 10.1063/1.4943211

Language

  • eng