Excitonic fine structure and recombination dynamics in single-crystalline ZnO
Published
Journal Article
The optical properties of a high quality bulk ZnO, thermally post treated in a forming gas environment are investigated by temperature dependent continuous wave and time-resolved photoluminescence (PL) measurements. Several bound and free exciton transitions along with their first excited states have been observed at low temperatures, with the main neutral-donor-bound exciton peak at 3.3605 eV having a linewidth of 0.7 meV and dominating the PL spectrum at 10 K. This bound exciton transition was visible only below 150 K, whereas the A-free exciton transition at 3.3771 eV persisted up to room temperature. A-free exciton binding energy of 60 meV is obtained from the position of the excited states of the free excitons. Additional intrinsic and extrinsic fine structures such as polariton, two-electron satellites, donor-acceptor pair transitions, and longitudinal optical-phonon replicas have also been observed and investigated in detail. Time-resolved PL measurements at room temperature reveal a biexponential decay behavior with typical decay constants of ∼170 and ∼864 ps for the as-grown sample. Thermal treatment is observed to increase the carrier lifetimes when performed in a forming gas environment.
Full Text
Duke Authors
Cited Authors
- Teke, A; Özgür, U; Doǧan, S; Gu, X; Morkoç, H; Nemeth, B; Nause, J; Everitt, HO
Published Date
- November 1, 2004
Published In
Volume / Issue
- 70 / 19
Start / End Page
- 1 - 10
International Standard Serial Number (ISSN)
- 0163-1829
Digital Object Identifier (DOI)
- 10.1103/PhysRevB.70.195207
Citation Source
- Scopus