Hyaluronan Hydrogels for a Biomimetic Spongiosa Layer of Tissue Engineered Heart Valve Scaffolds.

Journal Article (Journal Article)

Advanced tissue engineered heart valves must be constructed from multiple materials to better mimic the heterogeneity found in the native valve. The trilayered structure of aortic valves provides the ability to open and close consistently over a full human lifetime, with each layer performing specific mechanical functions. The middle spongiosa layer consists primarily of proteoglycans and glycosaminoglycans, providing lubrication and dampening functions as the valve leaflet flexes open and closed. In this study, hyaluronan hydrogels were tuned to perform the mechanical functions of the spongiosa layer, provide a biomimetic scaffold in which valve cells were encapsulated in 3D for tissue engineering applications, and gain insight into how valve cells maintain hyaluronan homeostasis within heart valves. Expression of the HAS1 isoform of hyaluronan synthase was significantly higher in hyaluronan hydrogels compared to blank-slate poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Hyaluronidase and matrix metalloproteinase enzyme activity was similar between hyaluronan and PEGDA hydrogels, even though these scaffold materials were each specifically susceptible to degradation by different enzyme types. KIAA1199 was expressed by valve cells and may play a role in the regulation of hyaluronan in heart valves. Cross-linked hyaluronan hydrogels maintained healthy phenotype of valve cells in 3D culture and were tuned to approximate the mechanical properties of the valve spongiosa layer. Therefore, hyaluronan can be used as an appropriate material for the spongiosa layer of a proposed laminate tissue engineered heart valve scaffold.

Full Text

Duke Authors

Cited Authors

  • Puperi, DS; O'Connell, RW; Punske, ZE; Wu, Y; West, JL; Grande-Allen, KJ

Published Date

  • May 2016

Published In

Volume / Issue

  • 17 / 5

Start / End Page

  • 1766 - 1775

PubMed ID

  • 27120017

Pubmed Central ID

  • PMC4986518

Electronic International Standard Serial Number (EISSN)

  • 1526-4602

International Standard Serial Number (ISSN)

  • 1525-7797

Digital Object Identifier (DOI)

  • 10.1021/acs.biomac.6b00180


  • eng