Gabor Time-Frequency Lattices and the Wexler-Raz Identity

Published

Journal Article

Gabor time-frequency lattices are sets of functions of the form (Formula presented.) generated from a given function (Formula presented.) by discrete translations in time and frequency. They are potential tools for the decomposition and handling of signals that, like speech or music, seem over short intervals to have well-defined frequencies that, however, change with time. It was recently observed that the behavior of a lattice (Formula presented.) can be connected to that of a dual lattice (Formula presented.) Here we establish this interesting relationship and study its properties. We then clarify the results by applying the theory of von Neumann algebras. One outcome is a simple proof that for (Formula presented.) to span (Formula presented.) the lattice (Formula presented.) must have at least unit density. Finally, we exploit the connection between the two lattices to construct expansions having improved convergence and localization properties. © 1994, Birkhäuser Boston. All rights reserved.

Full Text

Duke Authors

Cited Authors

  • Daubechies, I; Landau, HJ; Landau, Z

Published Date

  • January 1, 1994

Published In

Volume / Issue

  • 1 / 4

Start / End Page

  • 437 - 478

Electronic International Standard Serial Number (EISSN)

  • 1531-5851

International Standard Serial Number (ISSN)

  • 1069-5869

Digital Object Identifier (DOI)

  • 10.1007/s00041-001-4018-3

Citation Source

  • Scopus