Energy relaxation in collisions of hydrogen and deuterium with oxygen atoms

Journal Article

Collision energy transfer processes between hydrogen, deuterium, and oxygen atoms in the upper atmospheres of the terrestrial planets are studied. A new set of interaction potentials has been constructed using an accurate ab initio method. Full orientationdependent scattering cross sections have been obtained quantum mechanically and have been incorporated into the construction of the linear Boltzmann kinetic equation describing the energy relaxation process. The isotope and temperature dependence of the energy relaxation parameters have been analyzed. Distributions of the secondary energetic recoil atoms have been computed and the fractions of hot atoms capable of escaping from the atmospheres of the terrestrial planets have been determined. For applications to atmospheric physics and astrophysics, we have computed effective hard sphere cross sections for O + H and O + D collisions that closely reproduce the energy relaxation kinetics obtained from the linear Boltzmann equation. These effective cross sections, which are functions of the laboratory frame collisional energy and the temperature of the bath gas, may be used in simulations of the thermalization of hot O, H, and D atoms and their escape from planets. Copyright 2009 by the American Geophysical Union.

Full Text

Duke Authors

Cited Authors

  • Zhang, P; Kharchenko, V; Jamieson, MJ; Dalgarno, A

Published Date

  • January 1, 2009

Published In

Volume / Issue

  • 114 / 7

Electronic International Standard Serial Number (EISSN)

  • 2169-9402

Digital Object Identifier (DOI)

  • 10.1029/2009JA014055

Citation Source

  • Scopus