Photochemical reactions of the low-lying excited states of formaldehyde: T 1 / S 0 intersystem crossings, characteristics of the S 1 and T 1 potential energy surfaces, and a global T 1 potential energy surface

Journal Article (Journal Article)

Accurate ab initio calculations using the multireference configuration interaction method have been performed to characterize the potential energy surfaces (PESs) of low-lying excited states (S 1 and T 1) of formaldehyde (H 2 CO) and hydroxymethylene (HCOH) with emphasis on their isomerization, dissociation, and the possible role of the T 1 state in the nonadiabatic photodissociation of H 2 CO. Two regions on the T 1 PES are found to contribute to the nonadiabatic transition to the ground (S 0) state. Three minima on the seam of crossing (MSXs), 80-85 kcal/mol (above the S 0 global minimum), are located in the HCOH region; they, however, are blocked by a high-energy isomerization transition state at ∼107 kcal/mol. The other MSX discovered in the H2 CO region is reachable with energy ≤91 kcal/mol and strong spin-orbit interaction; this may be a more important pathway for the T 1 to S 0 transition. A full-dimensional PES is generated for the T 1 state, fitted by a weighted least-squares method employing a many-body expansion in which each term is a function of the internuclear distances and is invariant under permutations of like atoms. The single global function covers the formaldehyde and the HCOH regions as well as dissociation pathways. The high quality of the fitted PES is demonstrated by the small root-mean-square fitting error of 119 cm -1 and the close agreement between the critical points from ab initio calculations and from the fitted PES. © 2009 American Institute of Physics.

Full Text

Duke Authors

Cited Authors

  • Zhang, P; Maeda, S; Morokuma, K; Braams, BJ

Published Date

  • April 1, 2009

Published In

Volume / Issue

  • 130 / 11

International Standard Serial Number (ISSN)

  • 0021-9606

Digital Object Identifier (DOI)

  • 10.1063/1.3085952

Citation Source

  • Scopus