A lattice Boltzmann simulation of hemodynamics in a patient-specific aortic coarctation model


Journal Article

In this paper, we propose a system to determine the pressure gradient at rest in the aorta. We developed a technique to efficiently initialize a regular simulation grid from a patient-specific aortic triangulated model. On this grid we employ the lattice Boltzmann method to resolve the characteristic fluid flow through the vessel. The inflow rates, as measured physiologically, are imposed providing accurate pulsatile flow. The simulation required a resolution of at least 20 microns to ensure a convergence of the pressure calculation. HARVEY, a large-scale parallel code, was run on the IBM Blue Gene/Q supercomputer to model the flow at this high resolution. We analyze and evaluate the strengths and weaknesses of our system. © 2013 Springer-Verlag.

Full Text

Duke Authors

Cited Authors

  • Peters Randles, A; Bächer, M; Pfister, H; Kaxiras, E

Published Date

  • April 22, 2013

Published In

Volume / Issue

  • 7746 LNCS /

Start / End Page

  • 17 - 25

Electronic International Standard Serial Number (EISSN)

  • 1611-3349

International Standard Serial Number (ISSN)

  • 0302-9743

Digital Object Identifier (DOI)

  • 10.1007/978-3-642-36961-2_3

Citation Source

  • Scopus