Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control.

Journal Article (Journal Article)

Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin transcript is highly clustered in the cytoplasm of large multinucleate cells. This heterogeneous cyclin transcript localization results from aggregation of an RNA-binding protein, and deletion of a polyglutamine stretch in this protein results in random transcript localization. These multinucleate cells are remarkable in that nuclei cycle asynchronously despite sharing a common cytoplasm. Notably, randomization of cyclin transcript localization significantly diminishes nucleus-to-nucleus differences in the number of mRNAs and synchronizes cell-cycle timing. Thus, nonrandom cyclin transcript localization is important for cell-cycle timing control and arises due to polyQ-dependent behavior of an RNA-binding protein. There is a widespread association between polyQ expansions and RNA-binding motifs, suggesting that this is a broadly exploited mechanism to produce spatially variable transcripts and heterogeneous cell behaviors. PAPERCLIP:

Full Text

Duke Authors

Cited Authors

  • Lee, C; Zhang, H; Baker, AE; Occhipinti, P; Borsuk, ME; Gladfelter, AS

Published Date

  • June 24, 2013

Published In

Volume / Issue

  • 25 / 6

Start / End Page

  • 572 - 584

PubMed ID

  • 23769973

Pubmed Central ID

  • PMC4113091

Electronic International Standard Serial Number (EISSN)

  • 1878-1551

Digital Object Identifier (DOI)

  • 10.1016/j.devcel.2013.05.007


  • eng

Conference Location

  • United States