(2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy.

Published

Journal Article

Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, 211At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC). METHODS: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid (211At- 6: ) was synthesized. Cellular uptake and clonogenic survival were tested in PSMA-positive (PSMA+) PC3 PIP and PSMA-negative (PSMA-) PC3 flu human PC cells after 211At- 6: treatment. The antitumor efficacy of 211At- 6: was evaluated in mice bearing PSMA+ PC3 PIP and PSMA- PC3 flu flank xenografts at a 740-kBq dose and in mice bearing PSMA+, luciferase-expressing PC3-ML micrometastases. Biodistribution was determined in mice bearing PSMA+ PC3 PIP and PSMA- PC3 flu flank xenografts. Suborgan distribution was evaluated using α-camera images, and microscale dosimetry was modeled. Long-term toxicity was assessed in mice for 12 mo. RESULTS: 211At- 6: treatment resulted in PSMA-specific cellular uptake and decreased clonogenic survival in PSMA+ PC3 PIP cells and caused significant tumor growth delay in PSMA+ PC3 PIP flank tumors. Significantly improved survival was achieved in the newly developed PSMA+ micrometastatic PC model. Biodistribution showed uptake of 211At- 6: in PSMA+ PC3 PIP tumors and in kidneys. Microscale kidney dosimetry based on α-camera images and a nephron model revealed hot spots in the proximal renal tubules. Long-term toxicity studies confirmed that the dose-limiting toxicity was late radiation nephropathy. CONCLUSION: PSMA-targeted 211At- 6: α-particle radiotherapy yielded significantly improved survival in mice bearing PC micrometastases after systemic administration. 211At- 6: also showed uptake in renal proximal tubules resulting in late nephrotoxicity, highlighting the importance of long-term toxicity studies and microscale dosimetry.

Full Text

Duke Authors

Cited Authors

  • Kiess, AP; Minn, I; Vaidyanathan, G; Hobbs, RF; Josefsson, A; Shen, C; Brummet, M; Chen, Y; Choi, J; Koumarianou, E; Baidoo, K; Brechbiel, MW; Mease, RC; Sgouros, G; Zalutsky, MR; Pomper, MG

Published Date

  • October 2016

Published In

Volume / Issue

  • 57 / 10

Start / End Page

  • 1569 - 1575

PubMed ID

  • 27230930

Pubmed Central ID

  • 27230930

Electronic International Standard Serial Number (EISSN)

  • 1535-5667

Digital Object Identifier (DOI)

  • 10.2967/jnumed.116.174300

Language

  • eng

Conference Location

  • United States