Store-induced limit-cycle oscillations due to nonlinear wing-store attachment


Journal Article

Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Several high-performance fighter aircraft exhibit store-induced limit-cycle oscillations, leading to pilot discomfort, potential structural fatigue, and flight envelope restrictions. The roles of various aerodynamic and structural factors causing the limit-cycle oscillation are not sufficiently understood, and their numerical exploration via time marching is computationally expensive. In this paper, the effects of nonlinear stiffness and damping in the wing-store attachments of the F-16 aircraft are examined, in the presence of steady flow aerodynamic nonlinearity, using the computationally efficient harmonic balance method. Structural mechanisms including cubic restoring force of both softening and hardening types, freeplay, and Coulomb friction are systematically evaluated, and the most likely among these are identified by comparing the computed limit-cycle oscillation results to flight data. An extension of the harmonic balance method to handle nonlinear unsteady aerodynamics along with structural nonlinearity is also proposed to enable rapid and accurate limit-cycle oscillation assessment of candidate store configurations.

Full Text

Duke Authors

Cited Authors

  • Padmanabhan, MA; Dowell, EH; Thomas, JP; Pasiliao, CL

Published Date

  • January 1, 2016

Published In

Volume / Issue

  • 53 / 3

Start / End Page

  • 778 - 789

International Standard Serial Number (ISSN)

  • 0021-8669

Digital Object Identifier (DOI)

  • 10.2514/1.C033577

Citation Source

  • Scopus