Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer


Journal Article

© 2016 Author(s). There is a rising interest in employing the negative capacitance (NC) effect to achieve sub-60 mV/decade (below the thermal limit) switching in field-effect transistors (FETs). The NC effect, which is an effectual amplification of the applied gate potential, is realized by incorporating a ferroelectric material in series with a dielectric in the gate stack of a FET. One of the leading challenges to such NC-FETs is the variable substrate capacitance exhibited in 3D semiconductor channels (bulk, Fin, or nanowire) that minimizes the extent of sub-60 mV/decade switching. In this work, we demonstrate 2D NC-FETs that combine the NC effect with 2D MoS2 channels to extend the steep switching behavior. Using the ferroelectric polymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TrFE)), these 2D NC-FETs are fabricated by modification of top-gated 2D FETs through the integrated addition of P(VDF-TrFE) into the gate stack. The impact of including an interfacial metal between the ferroelectric and dielectric is studied and shown to be critical. These 2D NC-FETs exhibit a decrease in subthreshold swing from 113 mV/decade down to 11.7 mV/decade at room temperature with sub-60 mV/decade switching occurring over more than 4 decades of current. The P(VDF-TrFE) proves to be an unstable option for a device technology, yet the superb switching behavior observed herein opens the way for further exploration of nanomaterials for extremely low-voltage NC-FETs.

Full Text

Duke Authors

Cited Authors

  • McGuire, FA; Cheng, Z; Price, K; Franklin, AD

Published Date

  • August 29, 2016

Published In

Volume / Issue

  • 109 / 9

International Standard Serial Number (ISSN)

  • 0003-6951

Digital Object Identifier (DOI)

  • 10.1063/1.4961108

Citation Source

  • Scopus