Processing Oscillatory Signals by Incoherent Feedforward Loops.
Journal Article (Journal Article)
From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose.
Full Text
Duke Authors
Cited Authors
- Zhang, C; Tsoi, R; Wu, F; You, L
Published Date
- September 2016
Published In
Volume / Issue
- 12 / 9
Start / End Page
- e1005101 -
PubMed ID
- 27623175
Pubmed Central ID
- PMC5021367
Electronic International Standard Serial Number (EISSN)
- 1553-7358
International Standard Serial Number (ISSN)
- 1553-734X
Digital Object Identifier (DOI)
- 10.1371/journal.pcbi.1005101
Language
- eng