Driving an improved CAR for cancer immunotherapy.

Published

Journal Article

The recent clinical success of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies represents a paradigm shift in cancer immunotherapy. Unfortunately, application of CAR T cell-mediated therapy for solid tumors has so far been disappointing, and the reasons for this poor response in solid tumors remain unknown. In this issue of the JCI, Cherkassky and colleagues report on their use of a murine model of human pleural mesothelioma to explore potential factors that limit CAR T cell efficacy. Their studies have uncovered the importance of the tumor microenvironment in the inhibition of CAR T cell functions, revealed a critical role for the programmed death-1 (PD-1) pathway in CAR T cell exhaustion within the tumor microenvironment, and demonstrated improved antitumor effects with a CAR T cell-intrinsic PD-1 blockade strategy using a dominant negative form of PD-1. Together, the results of this study lay the groundwork for further evaluation of mechanisms underlying CAR T cell immune evasion within the tumor microenvironment for the improvement of CAR T cell-mediated therapy for solid tumors.

Full Text

Cited Authors

  • Huang, X; Yang, Y

Published Date

  • August 2016

Published In

Volume / Issue

  • 126 / 8

Start / End Page

  • 2795 - 2798

PubMed ID

  • 27454296

Pubmed Central ID

  • 27454296

Electronic International Standard Serial Number (EISSN)

  • 1558-8238

International Standard Serial Number (ISSN)

  • 0021-9738

Digital Object Identifier (DOI)

  • 10.1172/JCI88959

Language

  • eng