Engineering prokaryotic channels for control of mammalian tissue excitability.

Journal Article (Journal Article)

The ability to directly enhance electrical excitability of human cells is hampered by the lack of methods to efficiently overexpress large mammalian voltage-gated sodium channels (VGSC). Here we describe the use of small prokaryotic sodium channels (BacNav ) to create de novo excitable human tissues and augment impaired action potential conduction in vitro. Lentiviral co-expression of specific BacNav orthologues, an inward-rectifying potassium channel, and connexin-43 in primary human fibroblasts from the heart, skin or brain yields actively conducting cells with customizable electrophysiological phenotypes. Engineered fibroblasts ('E-Fibs') retain stable functional properties following extensive subculture or differentiation into myofibroblasts and rescue conduction slowing in an in vitro model of cardiac interstitial fibrosis. Co-expression of engineered BacNav with endogenous mammalian VGSCs enhances action potential conduction and prevents conduction failure during depolarization by elevated extracellular K+ , decoupling or ischaemia. These studies establish the utility of engineered BacNav channels for induction, control and recovery of mammalian tissue excitability.

Full Text

Duke Authors

Cited Authors

  • Nguyen, HX; Kirkton, RD; Bursac, N

Published Date

  • October 2016

Published In

Volume / Issue

  • 7 /

Start / End Page

  • 13132 -

PubMed ID

  • 27752065

Pubmed Central ID

  • PMC5071848

Electronic International Standard Serial Number (EISSN)

  • 2041-1723

International Standard Serial Number (ISSN)

  • 2041-1723

Digital Object Identifier (DOI)

  • 10.1038/ncomms13132


  • eng