Optic cup segmentation for glaucoma detection using low-rank superpixel representation.
Published
Journal Article
We present an unsupervised approach to segment optic cups in fundus images for glaucoma detection without using any additional training images. Our approach follows the superpixel framework and domain prior recently proposed in, where the superpixel classification task is formulated as a low-rank representation (LRR) problem with an efficient closed-form solution. Moreover, we also develop an adaptive strategy for automatically choosing the only parameter in LRR and obtaining the final result for each image. Evaluated on the popular ORIGA dataset, the results show that our approach achieves better performance compared with existing techniques.
Full Text
Duke Authors
Cited Authors
- Xu, Y; Duan, L; Lin, S; Chen, X; Wong, DWK; Wong, TY; Liu, J
Published Date
- 2014
Published In
- Med Image Comput Comput Assist Interv
Volume / Issue
- 17 / Pt 1
Start / End Page
- 788 - 795
PubMed ID
- 25333191
Pubmed Central ID
- 25333191
Digital Object Identifier (DOI)
- 10.1007/978-3-319-10404-1_98
Language
- eng
Conference Location
- Germany