Superpixel classification based optic cup segmentation.

Published

Journal Article

In this paper, we propose a superpixel classification based optic cup segmentation for glaucoma detection. In the proposed method, each optic disc image is first over-segmented into superpixels. Then mean intensities, center surround statistics and the location features are extracted from each superpixel to classify it as cup or non-cup. The proposed method has been evaluated in one database of 650 images with manual optic cup boundaries marked by trained professionals and one database of 1676 images with diagnostic outcome. Experimental results show average overlapping error around 26.0% compared with manual cup region and area under curve of the receiver operating characteristic curve in glaucoma detection at 0.811 and 0.813 in the two databases, much better than other methods. The method could be used for glaucoma screening.

Full Text

Duke Authors

Cited Authors

  • Cheng, J; Liu, J; Tao, D; Yin, F; Wong, DWK; Xu, Y; Wong, TY

Published Date

  • 2013

Published In

  • Med Image Comput Comput Assist Interv

Volume / Issue

  • 16 / Pt 3

Start / End Page

  • 421 - 428

PubMed ID

  • 24505789

Pubmed Central ID

  • 24505789

Digital Object Identifier (DOI)

  • 10.1007/978-3-642-40760-4_53

Language

  • eng

Conference Location

  • Germany