Association of retinal arteriolar dilatation with lower verbal memory: the Edinburgh Type 2 Diabetes Study.

Published

Journal Article

Retinal vascular calibre changes may reflect early subclinical microvascular disease in diabetes. Because of the considerable homology between retinal and cerebral microcirculation, we examined whether retinal vascular calibre, as a proxy of cerebral microvascular disease, was associated with cognitive function in older people with type 2 diabetes.A cross-sectional analysis of 954 people aged 60-75 years with type 2 diabetes from the population-based Edinburgh Type 2 Diabetes Study was performed. Participants underwent standard seven-field binocular digital retinal photography and a battery of seven cognitive function tests. The Mill Hill Vocabulary Scale was used to estimate pre-morbid cognitive ability. Retinal vascular calibre was measured from an image field with the optic disc in the centre using a validated computer-based program.After age and sex adjustment, larger retinal arteriolar and venular calibres were significantly associated with lower scores for the Wechsler Logical Memory test, with standardised regression coefficients -0.119 and -0.084, respectively (p < 0.01), but not with other cognitive tests. There was a significant interaction between sex and retinal vascular calibre for logical memory. In male participants, the association of increased retinal arteriolar calibre with logical memory persisted (p < 0.05) when further adjusted for vocabulary, venular calibre, depression, cardiovascular risk factors and macrovascular disease. In female participants, this association was weaker and not significant.Retinal arteriolar dilatation was associated with poorer memory, independent of estimated prior cognitive ability in older men with type 2 diabetes. The sex interaction with stronger findings in men requires confirmation. Nevertheless, these data suggest that impaired cerebral arteriolar autoregulation in smooth muscle cells, leading to arteriolar dilatation, may be a possible pathogenic mechanism in verbal declarative memory decrements in people with diabetes.

Full Text

Duke Authors

Cited Authors

  • Ding, J; Strachan, MWJ; Fowkes, FGR; Wong, TY; Macgillivray, TJ; Patton, N; Gardiner, TA; Deary, IJ; Price, JF

Published Date

  • July 2011

Published In

Volume / Issue

  • 54 / 7

Start / End Page

  • 1653 - 1662

PubMed ID

  • 21455727

Pubmed Central ID

  • 21455727

Electronic International Standard Serial Number (EISSN)

  • 1432-0428

International Standard Serial Number (ISSN)

  • 0012-186X

Digital Object Identifier (DOI)

  • 10.1007/s00125-011-2129-1

Language

  • eng