Molecular Features Underlying Neurodegeneration Identified through In Vitro Modeling of Genetically Diverse Parkinson's Disease Patients.

Published

Journal Article

The fact that Parkinson's disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis, we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profiling to advance our understanding of PD progression and the concordant downstream signaling pathways across divergent genetic predispositions. To model PD in vitro, we generated neurons harboring disease-causing mutations from patient-specific, induced pluripotent stem cells (iPSCs). We observed signs of degeneration in midbrain dopaminergic neurons, reflecting the cardinal feature of PD. Gene expression signatures of PD neurons provided molecular insights into disease phenotypes observed in vitro, including oxidative stress vulnerability and altered neuronal activity. Notably, PD neurons show that elevated RBFOX1, a gene previously linked to neurodevelopmental diseases, underlies a pattern of alternative RNA-processing associated with PD-specific phenotypes.

Full Text

Duke Authors

Cited Authors

  • Lin, L; Göke, J; Cukuroglu, E; Dranias, MR; VanDongen, AMJ; Stanton, LW

Published Date

  • June 14, 2016

Published In

Volume / Issue

  • 15 / 11

Start / End Page

  • 2411 - 2426

PubMed ID

  • 27264186

Pubmed Central ID

  • 27264186

Electronic International Standard Serial Number (EISSN)

  • 2211-1247

Digital Object Identifier (DOI)

  • 10.1016/j.celrep.2016.05.022

Language

  • eng

Conference Location

  • United States