Use of IMiD3, a thalidomide analog, as an adjunct to therapy for experimental tuberculous meningitis.

Published

Journal Article

Tuberculous meningitis (TBM), the most severe form of Mycobacterium tuberculosis infection in humans, is associated with significant morbidity and mortality despite successful treatment with antituberculous drugs. This is due to the irreversible brain damage subsequent to the local inflammatory response of the host to M. tuberculosis. Corticosteroids have been used in conjunction with antituberculous therapy in an attempt to modulate the inflammatory response, but this strategy has been of limited success. Therefore, we examined whether combining antituberculous drugs with the immunomodulatory drug thalidomide or with a new thalidomide analog, immunomodulatory drug 3 (IMiD3), would be effective in reducing morbidity and mortality in an experimental rabbit model of TBM. Intracisternal inoculation of 5 x 10(4) CFU of Mycobacterium bovis Ravenel in rabbits induced progressive subacute meningitis characterized by high cerebrospinal fluid (CSF) leukocytosis, protein influx, release of tumor necrosis factor (TNF), substantial meningeal inflammation, and mortality by day 28. Treatment with antituberculous drugs or with antituberculous drugs plus thalidomide improved the clinical course of disease somewhat and increased survival to about 50%. In contrast, treatment with antituberculous drugs in combination with IMiD3 limited pathological neurologic changes and resulted in marked improvement (73%) in survival. IMiD3 treatment was also associated with reduced leukocytosis in the CSF and significantly lower levels of TNF in CSF and plasma. Histologically, the meningeal inflammation in animals treated with antituberculous drugs plus IMiD3 was considerably attenuated compared to that of the other treatment groups. These results suggest a potential role for IMiD3 in the management of TBM in patients.

Full Text

Cited Authors

  • Tsenova, L; Mangaliso, B; Muller, G; Chen, Y; Freedman, VH; Stirling, D; Kaplan, G

Published Date

  • June 2002

Published In

Volume / Issue

  • 46 / 6

Start / End Page

  • 1887 - 1895

PubMed ID

  • 12019105

Pubmed Central ID

  • 12019105

Electronic International Standard Serial Number (EISSN)

  • 1098-6596

International Standard Serial Number (ISSN)

  • 0066-4804

Digital Object Identifier (DOI)

  • 10.1128/AAC.46.6.1887-1895.2002

Language

  • eng