Dislocation climb models from atomistic scheme to dislocation dynamics

Journal Article (Journal Article)

We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.

Full Text

Duke Authors

Cited Authors

  • Niu, X; Luo, T; Lu, J; Xiang, Y

Published Date

  • February 1, 2017

Published In

Volume / Issue

  • 99 /

Start / End Page

  • 242 - 258

International Standard Serial Number (ISSN)

  • 0022-5096

Digital Object Identifier (DOI)

  • 10.1016/j.jmps.2016.11.012

Citation Source

  • Scopus