Jump Regressions


Journal Article

© 2017 The Econometric Society We develop econometric tools for studying jump dependence of two processes from high-frequency observations on a fixed time interval. In this context, only segments of data around a few outlying observations are informative for the inference. We derive an asymptotically valid test for stability of a linear jump relation over regions of the jump size domain. The test has power against general forms of nonlinearity in the jump dependence as well as temporal instabilities. We further propose an efficient estimator for the linear jump regression model that is formed by optimally weighting the detected jumps with weights based on the diffusive volatility around the jump times. We derive the asymptotic limit of the estimator, a semiparametric lower efficiency bound for the linear jump regression, and show that our estimator attains the latter. The analysis covers both deterministic and random jump arrivals. In an empirical application, we use the developed inference techniques to test the temporal stability of market jump betas.

Full Text

Duke Authors

Cited Authors

  • Li, J; Todorov, V; Tauchen, G

Published Date

  • January 1, 2017

Published In

Volume / Issue

  • 85 / 1

Start / End Page

  • 173 - 195

Electronic International Standard Serial Number (EISSN)

  • 1468-0262

International Standard Serial Number (ISSN)

  • 0012-9682

Digital Object Identifier (DOI)

  • 10.3982/ECTA12962

Citation Source

  • Scopus