Analog Computation by DNA Strand Displacement Circuits.

Published

Journal Article

DNA circuits have been widely used to develop biological computing devices because of their high programmability and versatility. Here, we propose an architecture for the systematic construction of DNA circuits for analog computation based on DNA strand displacement. The elementary gates in our architecture include addition, subtraction, and multiplication gates. The input and output of these gates are analog, which means that they are directly represented by the concentrations of the input and output DNA strands, respectively, without requiring a threshold for converting to Boolean signals. We provide detailed domain designs and kinetic simulations of the gates to demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials can also be computed by DNA circuits built upon our architecture.

Full Text

Duke Authors

Cited Authors

  • Song, T; Garg, S; Mokhtar, R; Bui, H; Reif, J

Published Date

  • August 2016

Published In

Volume / Issue

  • 5 / 8

Start / End Page

  • 898 - 912

PubMed ID

  • 27363950

Pubmed Central ID

  • 27363950

Electronic International Standard Serial Number (EISSN)

  • 2161-5063

International Standard Serial Number (ISSN)

  • 2161-5063

Digital Object Identifier (DOI)

  • 10.1021/acssynbio.6b00144

Language

  • eng