The influence of an in-network lake on the timing, form, and magnitude of downstream dissolved organic carbon and nutrient flux
Within fluvial networks, lakes can be sinks or sources of dissolved organic carbon (DOC) and nutrients, yet the controls over sink-source behavior remain unclear. We investigated the influence that an in-network lake exerted on DOC and nutrient export. Our investigation consisted of: (1) injecting a conservative tracer to determine lake travel times and flow paths; (2) sampling lake inflow, outflow, and surrounding groundwater to determine water and nutrient budgets; and, (3) sampling internal lake profiles to ascertain in-lake physico-chemical patterns through time. Conservative tracer data indicated considerable in-lake retention and combined with inflow-outflow discharge measurements revealed a decoupling of kinematic and solute pulses. Nitrate (NO
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4011 Environmental engineering
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0406 Physical Geography and Environmental Geoscience