SU-F-T-347: An Absolute Dose-Volume Constraint Based Deterministic Optimization Framework for Multi-Co60 Source Focused Radiotherapy.

Journal Article (Journal Article)

PURPOSE: Treatment plan optimization in multi-Co60 source focused radiotherapy with multiple isocenters is challenging, because dose distribution is normalized to maximum dose during optimization and evaluation. The objective functions are traditionally defined based on relative dosimetric distribution. This study presents an alternative absolute dose-volume constraint (ADC) based deterministic optimization framework (ADC-DOF). METHODS: The initial isocenters are placed on the eroded target surface. Collimator size is chosen based on the area of 2D contour on corresponding axial slice. The isocenter spacing is determined by adjacent collimator sizes. The weights are optimized by minimizing the deviation from ADCs using the steepest descent technique. An iterative procedure is developed to reduce the number of isocenters, where the isocenter with lowest weight is removed without affecting plan quality. The ADC-DOF is compared with the genetic algorithm (GA) using the same arbitrary shaped target (254cc), with a 15mm margin ring structure representing normal tissues. RESULTS: For ADC-DOF, the ADCs imposed on target and ring are (D100>10Gy, D50,10, 0<12Gy, 15Gy and 20Gy) and (D40<10Gy). The resulting D100, 50, 10, 0 and D40 are (9.9Gy, 12.0Gy, 14.1Gy and 16.2Gy) and (10.2Gy). The objectives of GA are to maximize 50% isodose target coverage (TC) while minimize the dose delivered to the ring structure, which results in 97% TC and 47.2% average dose in ring structure. For ADC-DOF (GA) techniques, 20 out of 38 (10 out of 12) initial isocenters are used in the final plan, and the computation time is 8.7s (412.2s) on an i5 computer. CONCLUSION: We have developed a new optimization technique using ADC and deterministic optimization. Compared with GA, ADC-DOF uses more isocenters but is faster and more robust, and achieves a better conformity. For future work, we will focus on developing a more effective mechanism for initial isocenter determination.

Full Text

Duke Authors

Cited Authors

  • Liang, B; Liu, B; Li, Y; Guo, B; Xu, X; Wei, R; Zhou, F; Wu, Q

Published Date

  • June 2016

Published In

Volume / Issue

  • 43 / 6

Start / End Page

  • 3543 -

PubMed ID

  • 28047184

Electronic International Standard Serial Number (EISSN)

  • 2473-4209

Digital Object Identifier (DOI)

  • 10.1118/1.4956532


  • eng

Conference Location

  • United States