High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites

Published

Journal Article

Using finite-temperature phonon calculations and machine-learning methods, we assess the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0, 300, and 1000 K. We find 92 mechanically stable compounds at high temperatures-including 36 not mentioned in the literature so far-for which we calculate the thermal conductivity. We show that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual T-1 behavior.Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.

Full Text

Duke Authors

Cited Authors

  • Roekeghem, A; Carrete, J; Oses, C; Curtarolo, S; Mingo, N

Published Date

  • January 1, 2016

Published In

Volume / Issue

  • 6 / 4

Electronic International Standard Serial Number (EISSN)

  • 2160-3308

Digital Object Identifier (DOI)

  • 10.1103/PhysRevX.6.041061

Citation Source

  • Scopus