Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance.


Journal Article

Maternal microchimerism (MMc) has been associated with development of allospecific transplant tolerance, antitumor immunity, and cross-generational reproductive fitness, but its mode of action is unknown. We found in a murine model that MMc caused exposure to the noninherited maternal antigens in all offspring, but in some, MMc magnitude was enough to cause membrane alloantigen acquisition (mAAQ; "cross-dressing") of host dendritic cells (DCs). Extracellular vesicle (EV)-enriched serum fractions from mAAQ+, but not from non-mAAQ, mice reproduced the DC cross-dressing phenomenon in vitro. In vivo, mAAQ was associated with increased expression of immune modulators PD-L1 (programmed death-ligand 1) and CD86 by myeloid DCs (mDCs) and decreased presentation of allopeptide+self-MHC complexes, along with increased PD-L1, on plasmacytoid DCs (pDCs). Remarkably, both serum EV-enriched fractions and membrane microdomains containing the acquired MHC alloantigens included CD86, but completely excluded PD-L1. In contrast, EV-enriched fractions and microdomains containing allopeptide+self-MHC did not exclude PD-L1. Adoptive transfer of allospecific transgenic CD4 T cells revealed a "split tolerance" status in mAAQ+ mice: T cells recognizing intact acquired MHC alloantigens proliferated, whereas those responding to allopeptide+self-MHC did not. Using isolated pDCs and mDCs for in vitro culture with allopeptide+self-MHC-specific CD4 T cells, we could replicate their normal activation in non-mAAQ mice, and PD-L1-dependent anergy in mAAQ+ hosts. We propose that EVs provide a physiologic link between microchimerism and split tolerance, with implications for tumor immunity, transplantation, autoimmunity, and reproductive success.

Full Text

Cited Authors

  • Bracamonte-Baran, W; Florentin, J; Zhou, Y; Jankowska-Gan, E; Haynes, WJ; Zhong, W; Brennan, TV; Dutta, P; Claas, FHJ; van Rood, JJ; Burlingham, WJ

Published Date

  • January 17, 2017

Published In

Volume / Issue

  • 114 / 5

Start / End Page

  • 1099 - 1104

PubMed ID

  • 28096390

Pubmed Central ID

  • 28096390

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.1618364114


  • eng