Preparation of Dental Resins Resistant to Enzymatic and Hydrolytic Degradation in Oral Environments.


Journal Article

The short average service life of traditional dental composite restorative materials and increasing occurrence of secondary caries adjacent to composite restorations and sealants are necessitating the development of new, longer lasting compositions. Novel monomers and their polymers, reinforcing fillers, and adhesive components are needed. The goal of this research is to develop resin systems for use in restorations, sealants, and other dental services that are superior in properties and endurance to currently used bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) and urethane-dimethacrylate products. Ether-based monomers and their polymers that were not susceptible to enzymatic or hydrolytic degradation were prepared and characterized. They showed no degradation under hydrolytic and enzymatic challenges, whereas the hydrolysis of ester links weakened contemporary resins within 16 days under these challenges. The success of the ether-based materials is promising in making durable systems that are subjected to long-term biochemical and hydrolytic challenges in oral environments.

Full Text

Duke Authors

Cited Authors

  • Gonzalez-Bonet, A; Kaufman, G; Yang, Y; Wong, C; Jackson, A; Huyang, G; Bowen, R; Sun, J

Published Date

  • October 2015

Published In

Volume / Issue

  • 16 / 10

Start / End Page

  • 3381 - 3388

PubMed ID

  • 26358180

Pubmed Central ID

  • 26358180

Electronic International Standard Serial Number (EISSN)

  • 1526-4602

International Standard Serial Number (ISSN)

  • 1525-7797

Digital Object Identifier (DOI)

  • 10.1021/acs.biomac.5b01069


  • eng