Phase transitions for a planar quadratic contact process


Journal Article

© 2017 Elsevier Inc. We study a two dimensional version of Neuhauser's long range sexual reproduction model and prove results that give bounds on the critical values λf for the process to survive from a finite set and λe for the existence of a nontrivial stationary distribution. Our first result comes from a standard block construction, while the second involves a comparison with the “generic population model” of Bramson and Gray (1991) [3]. An interesting new feature of our work is the suggestion that, as in the one dimensional contact process, edge speeds characterize critical values. We are able to prove the following for our quadratic contact process when the range is large but suspect they are true for two dimensional finite range attractive particle systems that are symmetric with respect to reflection in each axis. There is a speed c(θ) for the expansion of the process in each direction. If c(θ)<0 in all directions, then λ>λf, while if at least one speed is positive, then λ>λe. It is a challenging open problem to show that if some speed is negative, then the system dies out from any finite set.

Full Text

Duke Authors

Cited Authors

  • Bessonov, M; Durrett, R

Published Date

  • June 1, 2017

Published In

Volume / Issue

  • 87 /

Start / End Page

  • 82 - 107

Electronic International Standard Serial Number (EISSN)

  • 1090-2074

International Standard Serial Number (ISSN)

  • 0196-8858

Digital Object Identifier (DOI)

  • 10.1016/j.aam.2017.01.002

Citation Source

  • Scopus