Co-designing a scalable quantum computer with trapped atomic ions

Journal Article (Review;Journal)

The first generation of quantum computers are on the horizon, fabricated from quantum hardware platforms that may soon be able to tackle certain tasks that cannot be performed or modelled with conventional computers. These quantum devices will not likely be universal or fully programmable, but special-purpose processors whose hardware will be tightly co-designed with particular target applications. Trapped atomic ions are a leading platform for first-generation quantum computers, but they are also fundamentally scalable to more powerful general purpose devices in future generations. This is because trapped ion qubits are atomic clock standards that can be made identical to a part in 1015, and their quantum circuit connectivity can be reconfigured through the use of external fields, without modifying the arrangement or architecture of the qubits themselves. In this forward-looking overview, we show how a modular quantum computer with thousands or more qubits can be engineered from ion crystals, and how the linkage between ion trap qubits might be tailored to a variety of applications and quantum-computing protocols.

Full Text

Duke Authors

Cited Authors

  • Brown, KR; Kim, J; Monroe, C

Published Date

  • January 1, 2016

Published In

Volume / Issue

  • 2 / 1

Electronic International Standard Serial Number (EISSN)

  • 2056-6387

Digital Object Identifier (DOI)

  • 10.1038/npjqi.2016.34

Citation Source

  • Scopus