Human Immunodeficiency Virus-1 Sequence Changes and Drug Resistance Mutation Among Virologic Failures of Lopinavir/Ritonavir Monotherapy: AIDS Clinical Trials Group Protocol A5230.

Published online

Journal Article

Background.  The mechanism of virologic failure (VF) of lopinavir/ritonavir (LPV/r) monotherapy is not well understood. We assessed sequence changes in human immunodeficiency virus-1 reverse-transcriptase (RT) and protease (PR) regions. Methods.  Human immunodeficiency virus-1 pol sequences from 34 participants who failed second-line LPV/r monotherapy were obtained at study entry (SE) and VF. Sequence changes were evaluated using phylogenetic analysis and hamming distance. Results.  Human immunodeficiency virus-1 sequence change was higher over drug resistance mutation (DRM) sites (median genetic distance, 2.2%; Q1 to Q3, 2.1%-2.5%) from SE to VF compared with non-DRM sites (median genetic distance, 1.3%; Q1 to Q3, 1.0%-1.4%; P < .0001). Evolution over DRM sites was mainly driven by changes in the RT (median genetic distance, 2.7%; Q1 to Q3, 2.2%-3.2%) compared with PR (median genetic distance, 1.1%; Q1 to Q3, 0.0%-1.1%; P < .0001). Most RT DRMs present at SE were lost at VF. At VF, 19 (56%) and 26 (76%) were susceptible to efavirenz/nevirapine and etravirine (ETV)/rilpivirine (RPV), respectively, compared with 1 (3%) and 12 (35%) at SE. Participants who retained nonnucleoside reverse-transcriptase inhibitor (NNRTI) DRMs and those without evolution of LPV/r DRMs had significantly shorter time to VF. Conclusions.  The selection of LPV/r DRMs in participants with longer time to VF suggests better adherence and more selective pressure. Fading NNRTI mutations and an increase in genotypic susceptibility to ETV and RPV could allow for the reuse of NNRTI. Further studies are warranted to understand mechanisms of PR failure.

Full Text

Duke Authors

Cited Authors

  • Vardhanabhuti, S; Katzenstein, D; Bartlett, J; Kumarasamy, N; Wallis, CL

Published Date

  • September 2016

Published In

Volume / Issue

  • 3 / 3

Start / End Page

  • ofw154 -

PubMed ID

  • 27704010

Pubmed Central ID

  • 27704010

International Standard Serial Number (ISSN)

  • 2328-8957

Digital Object Identifier (DOI)

  • 10.1093/ofid/ofw154

Language

  • eng

Conference Location

  • United States