Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes.

Published

Journal Article

A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10-22 and p=5.8×10-18), in general, and in short genes (p=1.4×10-47 and p=4.6×10-7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10-4, q<10-4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan.

Full Text

Duke Authors

Cited Authors

  • Culminskaya, I; Kulminski, AM; Yashin, AI

Published Date

  • January 2016

Published In

  • Annals of Gerontology and Geriatric Research

Volume / Issue

  • 3 / 1

PubMed ID

  • 28357417

Pubmed Central ID

  • 28357417

Language

  • eng