Efficient estimation of integrated volatility functionals via multiscale Jackknife

Published

Journal Article

© Institute of Mathematical Statistics, 2019. We propose semiparametrically efficient estimators for general integrated volatility functionals of multivariate semimartingale processes. A plug-in method that uses nonparametric estimates of spot volatilities is known to induce high-order biases that need to be corrected to obey a central limit theorem. Such bias terms arise from boundary effects, the diffusive and jump movements of stochastic volatility and the sampling error from the nonparametric spot volatility estimation. We propose a novel jackknife method for bias correction. The jackknife estimator is simply formed as a linear combination of a few uncorrected estimators associated with different local window sizes used in the estimation of spot volatility. We show theoretically that our estimator is asymptotically mixed Gaussian, semiparametrically efficient, and more robust to the choice of local windows. To facilitate the practical use, we introduce a simulation-based estimator of the asymptotic variance, so that our inference is derivative-free, and hence is convenient to implement.

Full Text

Duke Authors

Cited Authors

  • Li, J; Liu, Y; Xiu, D

Published Date

  • February 1, 2019

Published In

Volume / Issue

  • 47 / 1

Start / End Page

  • 156 - 176

International Standard Serial Number (ISSN)

  • 0090-5364

Digital Object Identifier (DOI)

  • 10.1214/18-AOS1684

Citation Source

  • Scopus