Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation.

Journal Article (Journal Article)

Induction of mild hypothermia improves neurologic outcome after global cerebral ischemia. This study measured levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in hippocampal tissue of rats after resuscitation from 8 minutes of normothermic, asphyxial cardiac arrest. After resuscitation, rats were maintained either at normal temperature (37 degrees C) or cooled to mild hypothermia (33 degrees C, beginning 60 minutes after resuscitation). After 12 or 24 hours, neurotrophin levels in hippocampus were measured by immunoblotting. Ischemia and reperfusion increased hippocampal levels of BDNF. Induction of hypothermia during reperfusion potentiated the increase in BDNF after 24 hours, but not after 12 hours. Levels of NGF were not increased by postresuscitation hypothermia. Hypothermia also increased tissue levels and tyrosine phosphorylation of TrkB, the receptor for BDNF. Increased BDNF levels were correlated with activation of the extracellularly regulated kinase (ERK), a downstream element in the signal transduction cascade induced by BDNF. In contrast to the many deleterious processes during ischemia and reperfusion that are inhibited by induced hypothermia, increasing BDNF levels is a potentially restorative process that is augmented. Increased activation of BDNF signaling is a possible mechanism by which mild hypothermia is able to reduce the neuronal damage typically occurring after cardiac arrest.

Full Text

Duke Authors

Cited Authors

  • D'Cruz, BJ; Fertig, KC; Filiano, AJ; Hicks, SD; DeFranco, DB; Callaway, CW

Published Date

  • July 2002

Published In

Volume / Issue

  • 22 / 7

Start / End Page

  • 843 - 851

PubMed ID

  • 12142569

International Standard Serial Number (ISSN)

  • 0271-678X

Digital Object Identifier (DOI)

  • 10.1097/00004647-200207000-00009


  • eng

Conference Location

  • United States