uORF-mediated translation allows engineered plant disease resistance without fitness costs.

Journal Article (Journal Article)

Controlling plant disease has been a struggle for humankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants' own defence genes, such as the master immune regulatory gene NPR1 (ref. 1). However, enhanced resistance obtained through such strategies is often associated with substantial penalties to fitness, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. On the basis of our latest finding that translation of key immune regulators, such as TBF1 (ref. 3), is rapidly and transiently induced upon pathogen challenge (see accompanying paper), we developed a 'TBF1-cassette' consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFsTBF1 ) of the TBF1 gene. Here we demonstrate that inclusion of uORFsTBF1 -mediated translational control over the production of snc1-1 (an autoactivated immune receptor) in Arabidopsis thaliana and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable strategy may lead to decreased pesticide use and reduce the selective pressure for resistant pathogens.

Full Text

Duke Authors

Cited Authors

  • Xu, G; Yuan, M; Ai, C; Liu, L; Zhuang, E; Karapetyan, S; Wang, S; Dong, X

Published Date

  • May 17, 2017

Published In

Volume / Issue

  • 545 / 7655

Start / End Page

  • 491 - 494

PubMed ID

  • 28514448

Pubmed Central ID

  • PMC5532539

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/nature22372


  • eng