WE-G-134-04: Four-Dimensional Dual Cone-Beam CT (4D-DCBCT): Preliminary Experimental Results.

Published

Journal Article

PURPOSE: One of the major challenges for clinical implementation of 4D-CBCT is long scan time. This study aims to develop a 4D-DCBCT technique to improve the efficiency of 4D imaging (for motion management in radiation therapy). METHODS: A bench-top DCBCT system, which consists of two orthogonal 40x30cm flat panel detectors and two conventional x-ray tubes with two individual high-voltage generators, sharing the same rotational axis, was used to develop the technique. The x-ray source to detector distance was 150 cm and x-ray source to rotational axis distance was 100 cm for both subsystems. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other, as opposed to a single CBCT utilizing 200° of projection data per each detector. Motion phantom studies were conducted to validate the efficiencies by comparing 4D images generated from 4D-DCBCT and 4D-CBCT. First, a simple sinusoidal profile was used to confirm the scan time reduction. Next, both irregular sinusoidal and patient-derived profiles were used to investigate the advantage of temporally correlated orthogonal projections due to a reduced scan time. Normalized mutual information (NMI) between 4D-DCBCT and 4D-CBCT was used for quantitative evaluation. RESULTS: For the simple sinusoidal profile, the average NMI for ten phases between two single 4D-CBCTs was 0.336, indicating the maximum NMI that can be achieved for this study. The average NMIs between 4D-DCBCT and each single 4D-CBCT were 0.331 and 0.320. For both irregular sinusoidal and patient-derived profiles, 4D-DCBCT generated phase images with less motion blurring when compared with single 4D-CBCT. CONCLUSION: The 4D-DCBCT provides an efficient 4D imaging technique for motion management. The scan time is approximately reduced by a factor of two. The temporally correlated orthogonal projections improved the image blur across 4D phase images.

Full Text

Duke Authors

Cited Authors

  • Li, H; Vergalasova, I; Giles, W; Bowsher, J; Yin, F

Published Date

  • June 2013

Published In

Volume / Issue

  • 40 / 6Part31

Start / End Page

  • 512 -

PubMed ID

  • 28519695

Pubmed Central ID

  • 28519695

Electronic International Standard Serial Number (EISSN)

  • 2473-4209

Digital Object Identifier (DOI)

  • 10.1118/1.4815673

Language

  • eng

Conference Location

  • United States