Conic controller synthesis that minimizes an upper bound on the closed-loop H2-norm


Conference Paper

© 2017 American Automatic Control Council (AACC). The Conic Sector Theorem is a versatile input-output stability result that can be used to ensure closed-loop, input-output stability where better-known results, such as the Passivity and Small Gain Theorems, cannot. Moreover, conic sectors can be used to characterize a variety of input-output properties, such as gain, phase, and minimum gain. This paper proposes a linear-matrix-inequality-based approach to the synthesis of conic controllers that minimize an upper-bound on the closed-loop v-norm. This provides a valuable tool for robust and optimal control by combining the utility of conic sectors and the Conic Sector Theorem with H2-optimal control.

Full Text

Duke Authors

Cited Authors

  • Bridgeman, LJ; Forbes, JR

Published Date

  • June 29, 2017

Published In

Start / End Page

  • 2405 - 2410

International Standard Serial Number (ISSN)

  • 0743-1619

International Standard Book Number 13 (ISBN-13)

  • 9781509059928

Digital Object Identifier (DOI)

  • 10.23919/ACC.2017.7963313

Citation Source

  • Scopus