The effects of neuromodulation in a novel obese-prone rat model of detrusor underactivity.

Journal Article (Journal Article)

Obesity is a global epidemic associated with an increased risk for lower urinary tract dysfunction. Inefficient voiding and urinary retention may arise in late-stage obesity when the expulsive force of the detrusor smooth muscle cannot overcome outlet resistance. Detrusor underactivity (DUA) and impaired contractility may contribute to the pathogenesis of nonobstructive urinary retention. We used cystometry and electrical stimulation of peripheral nerves (pudendal and pelvic nerves) to characterize and improve bladder function in urethane-anesthetized obese-prone (OP) and obese-resistant (OR) rats following diet-induced obesity (DIO). OP rats exhibited urinary retention and impaired detrusor contractility following DIO, reflected as increased volume threshold, decreased peak micturition pressure, and decreased voiding efficiency (VE) compared with OR rats. Electrical stimulation of the sensory branch of the pudendal nerve did not increase VE, whereas patterned bursting stimulation of the motor branch of the pudendal nerve increased VE twofold in OP rats. OP rats required increased amplitude of electrical stimulation of the pelvic nerve to elicit bladder contractions, and maximum evoked bladder contraction amplitudes were decreased relative to OR rats. Collectively, these studies characterize a novel animal model of DUA that can be used to determine pathophysiology and suggest that neuromodulation is a potential management option for DUA.

Full Text

Duke Authors

Cited Authors

  • Gonzalez, EJ; Grill, WM

Published Date

  • September 2017

Published In

Volume / Issue

  • 313 / 3

Start / End Page

  • F815 - F825

PubMed ID

  • 28637788

Pubmed Central ID

  • PMC5625106

Electronic International Standard Serial Number (EISSN)

  • 1522-1466

International Standard Serial Number (ISSN)

  • 1931-857X

Digital Object Identifier (DOI)

  • 10.1152/ajprenal.00242.2017


  • eng