Skip to main content

Near field scan alignment procedure for electrically large apertures

Publication ,  Journal Article
Sleasman, T; Imani, MF; Yurduseven, O; Trofatter, KP; Gowda, VR; Marks, DL; Gollub, JN; Smith, DR
Published in: IEEE Transactions on Antennas and Propagation
January 1, 2017

Computational imaging at microwave frequencies has gained traction due to its potential for obtaining high-quality images with fast acquisition rates. Complex and diverse radiation patterns form the cornerstone of this approach. Electrically large antennas, such as modemixing cavities and metamaterial apertures, have proven to be effective platforms for generating such waveforms. Due to the complex nature of these antennas, near field scanning is often required to characterize their radiation patterns. However, accurate knowledge of the produced waveforms' spatial distribution, with respect to the physical position of the antenna, is imperative. This relies on precise alignment between the antenna and the near field scan stage during the characterization process-a requirement that is especially cumbersome to achieve when operating at high frequencies. We present an effective method to address this problem; by introducing RF markers into the antenna the position of the antenna under test within the near field scanning setup can be obtained directly from the measurements. The proposed method is experimentally verified through comparison with measurements made using optical photogrammetry. The proposed process will find application in the alignment of computational and multistatic imaging systems, commonly used in security screening and threat detection, as well as in tiled electrically large antenna structures.

Duke Scholars

Published In

IEEE Transactions on Antennas and Propagation

DOI

ISSN

0018-926X

Publication Date

January 1, 2017

Volume

65

Issue

6

Start / End Page

3257 / 3262

Related Subject Headings

  • Networking & Telecommunications
  • 4009 Electronics, sensors and digital hardware
  • 4008 Electrical engineering
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sleasman, T., Imani, M. F., Yurduseven, O., Trofatter, K. P., Gowda, V. R., Marks, D. L., … Smith, D. R. (2017). Near field scan alignment procedure for electrically large apertures. IEEE Transactions on Antennas and Propagation, 65(6), 3257–3262. https://doi.org/10.1109/TAP.2017.2691465
Sleasman, T., M. F. Imani, O. Yurduseven, K. P. Trofatter, V. R. Gowda, D. L. Marks, J. N. Gollub, and D. R. Smith. “Near field scan alignment procedure for electrically large apertures.” IEEE Transactions on Antennas and Propagation 65, no. 6 (January 1, 2017): 3257–62. https://doi.org/10.1109/TAP.2017.2691465.
Sleasman T, Imani MF, Yurduseven O, Trofatter KP, Gowda VR, Marks DL, et al. Near field scan alignment procedure for electrically large apertures. IEEE Transactions on Antennas and Propagation. 2017 Jan 1;65(6):3257–62.
Sleasman, T., et al. “Near field scan alignment procedure for electrically large apertures.” IEEE Transactions on Antennas and Propagation, vol. 65, no. 6, Jan. 2017, pp. 3257–62. Scopus, doi:10.1109/TAP.2017.2691465.
Sleasman T, Imani MF, Yurduseven O, Trofatter KP, Gowda VR, Marks DL, Gollub JN, Smith DR. Near field scan alignment procedure for electrically large apertures. IEEE Transactions on Antennas and Propagation. 2017 Jan 1;65(6):3257–3262.

Published In

IEEE Transactions on Antennas and Propagation

DOI

ISSN

0018-926X

Publication Date

January 1, 2017

Volume

65

Issue

6

Start / End Page

3257 / 3262

Related Subject Headings

  • Networking & Telecommunications
  • 4009 Electronics, sensors and digital hardware
  • 4008 Electrical engineering
  • 4006 Communications engineering
  • 1005 Communications Technologies
  • 0906 Electrical and Electronic Engineering