Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks

Journal Article

Networks of randomly connected neurons are among the most popular models in theoretical neuroscience. The connectivity between neurons in the cortex is however not fully random, the simplest and most prominent deviation from randomness found in experimental data being the overrepresentation of bidirectional connections among pyramidal cells. Using numerical and analytical methods, we investigated the effects of partially symmetric connectivity on dynamics in networks of rate units. We considered the two dynamical regimes exhibited by random neural networks: the weak-coupling regime, where the firing activity decays to a single fixed point unless the network is stimulated, and the strong-coupling or chaotic regime, characterized by internally generated fluctuating firing rates. In the weak-coupling regime, we computed analytically for an arbitrary degree of symmetry the auto-correlation of network activity in presence of external noise. In the chaotic regime, we performed simulations to determine the timescale of the intrinsic fluctuations. In both cases, symmetry increases the characteristic asymptotic decay time of the autocorrelation function and therefore slows down the dynamics in the network.

Full Text

Duke Authors

Cited Authors

  • Martí, D; Brunel, N; Ostojic, S