Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water

Published

Journal Article

© 2017 Elsevier Ltd To produce hydrogen and oxygen from photocatalytic overall splitting of pure water provides a promising green route to directly convert solar energy to clean fuel. However, the design and fabrication of high-efficiency photocatalyst is challenging. Here we present that by connecting different nanostructures together in a rational fashion, components that cannot individually split water into H2 and O2 can work together as efficient photocatalyst with high solar-to-hydrogen (STH) energy conversion efficiency and avoid the use of any sacrificial reagent. Specifically, Te/SnS2/Ag artificial nanoleaves (ANLs) consist of ultrathin SnS2 nanoplates grown on Te nanowires and decorated with numerous Ag nanoparticles. The appropriate band structure of Te/SnS2 p-n junctions and the surface plasmon resonance of Ag nanoparticles synergistically enhance the quantum yield and separation efficiency of electron-hole pairs. As a result, Te/SnS2/Ag ANLs enable visible-light driven overall water-splitting without any sacrificial reagent and exhibit high H2 and O2 production rates of 332.4 and 166.2 μmol h−1, respectively. Well-preserved structure after long-term measurement indicates its high stability. It represents a feasible approach for direct H2 production from only sunlight, pure water, and rationally-designed ANL photocatalysts.

Full Text

Duke Authors

Cited Authors

  • Yan, C; Xue, X; Zhang, W; Li, X; Liu, J; Yang, S; Hu, Y; Chen, R; Yan, Y; Zhu, G; Kang, Z; Kang, DJ; Jin, Z

Published Date

  • September 1, 2017

Published In

Volume / Issue

  • 39 /

Start / End Page

  • 539 - 545

International Standard Serial Number (ISSN)

  • 2211-2855

Digital Object Identifier (DOI)

  • 10.1016/j.nanoen.2017.07.039

Citation Source

  • Scopus