Skip to main content

Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool.

Publication ,  Journal Article
Prakalapakorn, SG; Vickers, LA; Estrada, R; Freedman, SF; Tomasi, C; Farsiu, S; Wallace, DK
Published in: Open Ophthalmol J
2017

BACKGROUND: The diagnosis of plus disease in retinopathy of prematurity (ROP) largely determines the need for treatment; however, this diagnosis is subjective. To make the diagnosis of plus disease more objective, semi-automated computer programs (e.g. ROPtool) have been created to quantify vascular dilation and tortuosity. ROPtool can accurately analyze blood vessels only in images with very good quality, but many still images captured by indirect ophthalmoscopy have insufficient image quality for ROPtool analysis. PURPOSE: To evaluate the ability of an image fusion methodology (robust mosaicing) to increase the efficiency and traceability of posterior pole vessel analysis by ROPtool. MATERIALS AND METHODOLOGY: We retrospectively reviewed video indirect ophthalmoscopy images acquired during routine ROP examinations and selected the best unenhanced still image from the video for each infant. Robust mosaicing was used to create an enhanced mosaic image from the same video for each eye. We evaluated the time required for ROPtool analysis as well as ROPtool's ability to analyze vessels in enhanced vs. unenhanced images. RESULTS: We included 39 eyes of 39 infants. ROPtool analysis was faster (125 vs. 152 seconds; p=0.02) in enhanced vs. unenhanced images, respectively. ROPtool was able to trace retinal vessels in more quadrants (143/156, 92% vs 115/156, 74%; p=0.16) in enhanced mosaic vs. unenhanced still images, respectively and in more overall (38/39, 97% vs. 34/39, 87%; p=0.07) enhanced mosaic vs. unenhanced still images, respectively. CONCLUSION: Retinal image enhancement using robust mosaicing advances efforts to automate grading of posterior pole disease in ROP.

Duke Scholars

Published In

Open Ophthalmol J

DOI

ISSN

1874-3641

Publication Date

2017

Volume

11

Start / End Page

143 / 151

Location

Netherlands

Related Subject Headings

  • 3212 Ophthalmology and optometry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Prakalapakorn, S. G., Vickers, L. A., Estrada, R., Freedman, S. F., Tomasi, C., Farsiu, S., & Wallace, D. K. (2017). Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool. Open Ophthalmol J, 11, 143–151. https://doi.org/10.2174/1874364101711010143
Prakalapakorn, Sasapin G., Laura A. Vickers, Rolando Estrada, Sharon F. Freedman, Carlo Tomasi, Sina Farsiu, and David K. Wallace. “Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool.Open Ophthalmol J 11 (2017): 143–51. https://doi.org/10.2174/1874364101711010143.
Prakalapakorn SG, Vickers LA, Estrada R, Freedman SF, Tomasi C, Farsiu S, et al. Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool. Open Ophthalmol J. 2017;11:143–51.
Prakalapakorn, Sasapin G., et al. “Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool.Open Ophthalmol J, vol. 11, 2017, pp. 143–51. Pubmed, doi:10.2174/1874364101711010143.
Prakalapakorn SG, Vickers LA, Estrada R, Freedman SF, Tomasi C, Farsiu S, Wallace DK. Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool. Open Ophthalmol J. 2017;11:143–151.

Published In

Open Ophthalmol J

DOI

ISSN

1874-3641

Publication Date

2017

Volume

11

Start / End Page

143 / 151

Location

Netherlands

Related Subject Headings

  • 3212 Ophthalmology and optometry