Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

Journal Article (Journal Article)

PURPOSE: To investigate the B0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. METHODS: Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. RESULTS: STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. CONCLUSION: The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Full Text

Duke Authors

Cited Authors

  • Wei, H; Gibbs, E; Zhao, P; Wang, N; Cofer, GP; Zhang, Y; Johnson, GA; Liu, C

Published Date

  • November 2017

Published In

Volume / Issue

  • 78 / 5

Start / End Page

  • 1683 - 1690

PubMed ID

  • 28856712

Pubmed Central ID

  • PMC5786159

Electronic International Standard Serial Number (EISSN)

  • 1522-2594

Digital Object Identifier (DOI)

  • 10.1002/mrm.26882


  • eng

Conference Location

  • United States